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The exact energy and angular momentum conservation laws are derived by the
Noether method for the Hamiltonian and symplectic representations of the gauge-free
electromagnetic gyrokinetic Vlasov–Maxwell equations. These gyrokinetic equations,
which are solely expressed in terms of electromagnetic fields, describe the low-frequency
turbulent fluctuations that perturb a time-independent toroidally-axisymmetric magnetized
plasma. The explicit proofs presented here provide a complete picture of the
transfer of energy and angular momentum between the gyrocentres and the perturbed
electromagnetic fields, in which the crucial roles played by gyrocentre polarization and
magnetization effects are highlighted. In addition to yielding an exact angular momentum
conservation law, the gyrokinetic Noether equation yields an exact momentum transport
equation, which might be useful in more general equilibrium magnetic geometries.
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1. Introduction

Nonlinear gyrokinetic theory has been at the forefront of plasma physics research since
the pioneering work of Frieman & Chen (1982). In its modern representation (Brizard
& Hahm 2007), nonlinear gyrokinetic theory involves a two-step (guiding-centre +
gyrocentre) transformation leading to the adiabatic invariance of the gyrocentre magnetic
moment and a set of reduced gyrocentre Hamilton equations that are decoupled from the
fast gyromotion dynamics. The guiding-centre and gyrocentre dynamical reductions, on
the other hand, introduce guiding-centre and gyrocentre polarization and magnetization
in the gyrokinetic Maxwell equations, which play crucial roles in the self-consistent
evolution of a turbulent magnetized plasma.
The gyrokinetic Vlasov–Maxwell equations presented in this work are based on the

gauge-free electromagnetic field gyrokinetic formulation recently introduced by Burby &
Brizard (2019) and Brizard (2020), in which only the perturbed electromagnetic fields
appear in the gyrokinetic Vlasov–Maxwell equations. This gyrokinetic electromagnetic
field formulation, which also facilitates the development of hybrid kinetic particle
simulation schemes (Chen & Parker 2009; Chen et al. 2019), has been a topic of recent
research interest (Chen, Zonca & Chen 2020).
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2 A.J. Brizard

1.1. Gyrokinetic energy conservation law
The energy conservation laws of several sets of gyrokinetic equations have been the
topic of active research since the Hamiltonian gyrokinetic work of Dubin et al. (1983),
where the energy conservation law was derived directly from the electrostatic gyrokinetic
Vlasov–Poisson equations. Next, the energy conservation laws for the finite-beta
electromagnetic gyrokinetic equations and the fully electromagnetic gyrokinetic equations
were constructed by Hahm, Lee & Brizard (1988) and Brizard (1989b), respectively,
and then proved explicitly by Brizard (1989a) for the fully electromagnetic case. Since
its inception, the primary use of an exact energy conservation law associated with
a gyrokinetic model has been seen as a measure of the accuracy of its numerical
implementation using gyrokinetic particle simulation methods (Garbet et al. 2010).
The discovery of the Lagrangian (Sugama 2000), Eulerian (Brizard 2000a,b), and

Euler–Poincaré (Squire et al. 2013) variational formulations for the nonlinear gyrokinetic
equations led to the direct derivations of exact gyrokinetic energy conservation laws
by the Noether method (Goldstein, Poole & Safko 2002; Brizard 2005b). While the
Noether derivation guarantees the existence of an exact energy conservation law, its
explicit proof often provides useful insights into the transfer of energy between the
perturbed electromagnetic fields, on the one hand, and the gyrocentre Vlasov distribution,
on the other hand. This is especially important since polarization and magnetization
combine particles and fields at all orders in the gyrocentre perturbation analysis. Using an
Eulerian variational formulation, explicit proofs were also presented for several nonlinear
gyrokinetic models (Brizard & Chan 1999; Brizard 2010a) and reduced-fluid plasma
models (Strintzi, Scott & Brizard 2005; Brizard 2005a; Brizard et al. 2008).

1.2. Gyrokinetic angular momentum conservation law
The topic of an exact gyrokinetic momentum conservation law gained crucial importance
in the context of the momentum transport (Waltz et al. 2007; Parra & Catto 2010a;
Abiteboul et al. 2011; Peeters et al. 2011) and intrinsic toroidal rotation (Wang, Peng &
Diamond 2018; Stoltzfus-Dueck 2019) in axisymmetric tokamak plasmas. In particular,
the phenomenon of intrinsic toroidal rotation, which is observed in the absence of
external torque, must be investigated within the context of toroidal angular momentum
conservation. Scott & Smirnov (2010) derived an explicit toroidal angular momentum
conservation law for the electrostatic gyrokinetic equations by deriving it as a moment
of the gyrokinetic Vlasov equation. The same equation was rederived using the Noether
method, and explicitly shown to be exact, by Brizard & Tronko (2011), while the Noether
derivation of the momentum conservation law was also considered for several reduced
plasma fluid models (Brizard 2005b, 2010b).

1.3. Previous variational derivations of gyrokinetic conservation laws
The angular momentum conservation law in gyrokinetic Vlasov–Maxwell models have
regained significant interest recently in several works by Hirvijoki et al. (2020), Fan,
Qin & Xiao (2020) and Sugama et al. (2021). By not splitting the magnetic field into
equilibrium (time-independent) and perturbed (time-dependent) components, both Fan
et al. (2020) and Sugama et al. (2021) rederived the guiding-centre energy–momentum
conservation laws derived earlier by Sugama et al. (2016), using a direct moment approach
of the drift-kinetic equation, and by Brizard & Tronci (2016), using several equivalent
guiding-centre variational principles. Fan et al. (2020) generalized earlier results by
Pfirsch & Morrison (1985) and Similon (1985) by including higher-order guiding-centre
gyrogauge corrections.
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Gauge-free electromagnetic gyrokinetic equations 3

In particular, using a hybrid gyrokinetic model that includes gyrokinetic electrostatic
fluctuations with a weakly time-dependent guiding-centre Lagrangian, Sugama et al.
(2021) obtained a symmetric gyrokinetic stress tensor Tji = Tij using a formula, Tij ≡
Lgij − 2∂L/∂gij, obtained from the general theory of relativity (Landau & Lifshitz 1971),
in which partial derivatives of the Lagrangian density L with respect to components of the
symmetric metric tensor g are evaluated (here, a specific choice for the spatial coordinates
is not needed). Additional comments about the works of Fan et al. (2020) and Sugama et
al. (2021) are made in § 3.
The work of Hirvijoki et al. (2020) presents an Euler–Poincaré variational principle

for the drift-kinetic limit of the gauge-free gyrokinetic Vlasov–Maxwell model of Burby
& Brizard (2019). In this work, the standard gyrokinetic separation of equilibrium and
perturbed components for the electromagnetic field is used, and the asymmetry of
the resulting gyrokinetic stress tensor is shown to be driven by electromagnetic field
perturbations only. The exact conservation law of toroidal angular momentum, however,
will be guaranteed under the assumption of an axisymmetric equilibrium magnetic field.
The energy–momentum conservation laws derived by Hirvijoki et al. (2020), which will
be rederived here from an Eulerian variational principle, will be explicitly proved and
expanded in the present work.

1.4. Organization
The remainder of the present paper is organized as follows. In § 2, we review the work
of Brizard (2008) where the exact energy–momentum conservation laws are given for a
generic set of reduced Vlasov–Maxwell equations, in which the electromagnetic fields are
not separated into background and perturbed parts. The paradigm set of reduced plasma
equations is given by the guiding-centre Vlasov–Maxwell equations, with variational
formulations (Pfirsch & Morrison 1985; Similon 1985; Brizard & Tronci 2016) leading to
exact reduced energy–momentum conservation laws. While the resulting reduced stress
tensor is manifestly asymmetric, as noted by Pfirsch & Morrison (1985) and Similon
(1985), we show that the apparent asymmetry of the reduced stress tensor is due to
polarization and magnetization effects derived from a ponderomotive Hamiltonian (Cary
& Kaufman 1981; Brizard 2009). Since the stress tensor must be explicitly symmetric
when the electromagnetic fields (E,B) are not split into time-independent (equilibrium)
and time-dependent (perturbed) components, we use the guiding-centre Vlasov–Maxwell
model of Brizard & Tronci (2016) and show that the explicit expressions of the
guiding-centre polarization and magnetization guarantee a symmetric guiding-centre
stress tensor.
In § 3, we review the gauge-free gyrocentre Hamiltonian models derived by Burby &

Brizard (2019) and Brizard (2020), where the equations of motion are solely expressed
in terms of the perturbed electromagnetic fields (E1,B1). Here, following the standard
gyrokinetic formalism (Brizard & Hahm 2007), the magnetic field B = B0 + εB1 is
split into the time-independent equilibrium magnetic field B0, which is assumed to be
axisymmetric (i.e. ∂B0/∂ϕ = ẑ × B0), and the time-dependent magnetic field perturbation
B1 (ε denotes the magnitude of the perturbation). In addition, we assume that E =
εE1 appears solely as a perturbation electric field in the present work, although a
equilibrium electric field may also be considered (Brizard 1995). We note that the choice
of the magnetic perturbation B1 is consistent with the source-free perturbed Maxwell
equations ∇ · B1 = 0 and ∂B1/∂t = −c∇ × E1. In § 4, the gyrokinetic Vlasov–Maxwell
equations are derived from a variational principle (Brizard 2000a,b), from which explicit
expressions for the gyrocentre polarization and magnetization are obtained for both
gauge-free gyrokinetic models. In § 5, the gyrokinetic conservation laws are derived by
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4 A.J. Brizard

the Noether method. In the present work, we show that the apparent asymmetry of the
gyrokinetic stress tensor, which is only due to electromagnetic field perturbations (since
the guiding-centre stress tensor is symmetric), plays a crucial role in establishing an
exact toroidal angular momentum conservation law in the presence of a non-uniform
(but axisymmetric) equilibrium magnetic field. We also show that an exact gyrokinetic
momentum transport equation will be obtained from the gyrokinetic Noether equation,
which can be used to study momentum transport in general magnetic geometries.

2. Conservation laws for the reduced Vlasov–Maxwell equations

Although our primary motivation is to discuss exact conservation laws of gyrokinetic
systems, we present a brief discussion on the form of these conservation laws for a
generic set of reduced Vlasov–Maxwell equations, based on work presented at the 2006
Vlasovia conference (Brizard 2008). In this formal derivation, the electromagnetic fields
(E = −∇Φ − c−1∂tA,B = ∇ × A) are not split into time-independent background and
time-dependent perturbed components and, by using canonical coordinates (x̄, p̄), the
dependence on the potentials (Φ,A) and the fields (E,B) only enter through the reduced
Hamiltonian

H̄(p̄;Φ,A,E,B) ≡ m |v̄|2/2 + eΦ + Ψ̄ (v̄;E,B), (2.1)

where v̄ ≡ [p̄ − (e/c)A]/m, the potentials and fields (Φ,A,E,B) are evaluated at the
reduced position x̄ and Ψ̄ (v̄;E,B) denotes the ponderomotive Hamiltonian (Cary &
Kaufman 1981; Brizard 2009). Here, the dependence of the ponderomotive Hamiltonian
on the gauge-free term v̄ maintains the gauge-transformation property of the reduced
Hamiltonian.

2.1. Reduced Vlasov–Maxwell equations
Using the reduced Hamiltonian (2.1), the reduced Vlasov–Maxwell equations are now
expressed as follows. First, the reduced equations of motion are given in Hamiltonian
canonical form as

dx̄/dt = ∂H̄/∂ p̄ = v̄ + ∂Ψ̄ /∂ p̄, (2.2)

dp̄/dt = −∇̄H̄ = −e∇̄Φ + (e/c) ∇̄A · v̄ − ∇̄Ψ̄ . (2.3)

If the reduced force equation (2.3) is written in terms of v̄, we find

m
dv̄
dt

= eE + e
c
dx̄
dt

× B + ∇̄E · π̄ + ∇̄B · μ̄, (2.4)

where we used (2.2) on the right-hand side and the ponderomotive force

−∇̄Ψ̄ = −∇̄A ·
(

−e
c

∂Ψ̄

∂ p̄

)
+ ∇̄E · π̄ + ∇̄B · μ̄ (2.5)

includes the reduced electric and magnetic dipole moments (π̄, μ̄) ≡ (−∂Ψ̄ /∂E,−∂Ψ̄ /
∂B) derived from the ponderomotive Hamiltonian. The reduced Vlasov equation is,
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Gauge-free electromagnetic gyrokinetic equations 5

therefore, expressed as

∂ f̄
∂t

= −dx̄
dt

· ∇̄f̄ − dp̄
dt

· ∂ f̄
∂ p̄

. (2.6)

The reduced Maxwell equations, on the other hand, are expressed as

∇ · E = 4π� ≡ 4π
(
�̄ − ∇ · P̄

)
, (2.7)

∇ × B − 1
c

∂E
∂t

= 4π
c

J ≡ 4π
c

(
J̄ + ∂P̄

∂t
+ c∇ × M̄

)
, (2.8)

with the source-free Maxwell equations

∂B/∂t + c∇ × E = 0,

∇ · B = 0.

}
(2.9)

In (2.7) and (2.8), the reduced charge and current densities (�̄, J̄ ) and the reduced
polarization and magnetization (P̄, M̄) are derived from the reduced Hamiltonian:∫

p̄
f̄ ∂H̄(p̄;Φ,A,E,B) ≡ ∂Φ�̄ − ∂A · J̄/c − ∂E · P̄ − ∂B · M̄, (2.10)

where the notation
∫
p̄ indicates an integral over canonical-momentum space (as well as

including a sum over particle species) and ∂ denotes either a space–time partial derivative
(∇, ∂/∂t) or an Eulerian variation δ. Specifically, we find the definitions

(
ρ̄, J̄ , P̄, M̄

) ≡
∫
p̄
f̄
(
e, e

dx̄
dt

,−∂Ψ̄

∂E
,−∂Ψ̄

∂B

)
, (2.11)

where contributions arise from reduced particles located at the field position (i.e. x̄ = x).
We also note that the reduced Maxwell equations (2.7) and (2.8) can be written in terms

of the reduced Maxwell fields
D̄ = E + 4πP̄,

H̄ = B − 4πM̄,

}
(2.12)

as

∇ · D̄ = 4π�̄, (2.13)

∇ × H̄ − 1
c

∂D̄

∂t
= 4π

c
J̄ , (2.14)

which guarantees that the reduced charge conservation law

∂�

∂t
+ ∇ · J = ∂

∂t

(
�̄ − ∇ · P̄

)+ ∇ ·
(
J̄ + ∂P̄

∂t
+ c∇ × M̄

)
= ∂�̄

∂t
+ ∇ · J̄ = 0

(2.15)
follows directly from the charge conservation law.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377821000519
Downloaded from https://www.cambridge.org/core. IP address: 24.147.94.139, on 25 May 2021 at 10:25:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377821000519
https://www.cambridge.org/core


6 A.J. Brizard

2.2. Reduced energy–momentum conservation laws
Since the electromagnetic field (E,B) is not split into equilibrium and perturbed
components in the reduced Vlasov–Maxwell equations (2.6)–(2.8), the energy–momentum
conservation laws derived for the reduced Vlasov equation (2.6) and the reduced Maxwell
equations (2.7) and (2.8) (or (2.13) and (2.14)), with the source-free Maxwell equations
(2.9), are direct consequences of the Noether theorem. Here, the reduced Noether equation
(Brizard 2008) is first expressed as

0 = ∂

∂t

[∫
p̄
f̄ δS̄ − δA · D̄

4πc
+ δt

8π

(|E|2 − |B|2)
]

+ ∇ ·
[∫

p̄
f̄
dx̄
dt

δS̄ − 1
4π

(
δΦD̄ + δA × H̄

)+ δx
8π

(|E|2 − |B|2)] , (2.16)

where the Eulerian variations

δS̄ = p̄ · δx − H̄δt,

δΦ = E · δx − c−1∂δχ/∂t,

δA = Ecδt + δx × B + ∇δχ,

⎫⎪⎬
⎪⎭ (2.17)

with the gauge term defined as δχ ≡ Φcδt − A · δx, are generated by the space–time
virtual displacements (δx, δt). We note that the gauge term δχ appears naturally when
the Euler variations δΦ = −δt∂Φ/∂t − δx · ∇Φ and δA = −δt∂A/∂t − δx · ∇A are
expressed in terms of the electric field E = −∇Φ − c−1∂A/∂t and the magnetic field
B = ∇ × A.
We now remove the gauge-dependent terms by using the identity

− ∂

∂t

(∇δχ · D̄)+ ∇ ·
(

∂δχ

∂t
D̄ − c∇δχ × H̄

)

= ∂

∂t

(
δχ∇ · D̄)− ∇ ·

[
δχ

(
∂D̄

∂t
− c∇ × H̄

)]
, (2.18)

and, using the reduced Maxwell equations (2.13) and (2.14) and the gauge-independent
term δS̄ + (e/c)δχ = mv̄ · δx − K̄δt, the reduced Noether equation (2.16) yields the
reduced energy–momentum conservation law

∂

∂t
(P · δx − Eδt) + ∇ · (T · δx − Sδt) = 0. (2.19)

Here, the reduced energy–momentum densities

E =
∫
p̄
f̄ K̄ + 1

4π
E · D̄ − 1

8π

(|E|2 − |B|2) , (2.20)

P =
∫
p̄
f̄
dx̄
dt

mv̄ + D̄ × B
4πc

(2.21)

both include reduced polarization effects, with (2.21) displaying theMinkowski form (D̄ ×
B/4πc) for the reduced electromagnetic momentum density. The reduced energy-density
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Gauge-free electromagnetic gyrokinetic equations 7

flux

S =
∫
p̄
f̄
dx̄
dt

K̄ + c
4π

E × H̄, (2.22)

on the other hand, displays the Abraham form (E × cH̄/4π) for the reduced Poynting flux,
while the reduced stress tensor

T =
∫
p̄
f̄
dx̄
dt

mv̄ + I
4π

[
1
2

(|E|2 − |B|2|)+ B · H̄

]
− 1

4π

(
BH̄ + D̄E

)
(2.23)

is composed of the reduced Reynolds stress tensor, which includes the ponderomotive
velocity ∂Ψ̄ /∂ p̄ = dx̄/dt − v̄, and the reduced Maxwell stress tensor, which includes
polarization and magnetization corrections. We immediately see that the reduced stress
tensor (2.23), which can be expressed as

T = I
8π

(|E|2 + |B|2)− 1
4π

(EE + BB) +
∫
p̄
f̄
[
m
dx̄
dt

dx̄
dt

+ I
(
B · ∂Ψ̄

∂B

)]

−
∫
p̄
f̄
(
m
dx̄
dt

∂Ψ̄

∂ p̄
+ B

∂Ψ̄

∂B
− ∂Ψ̄

∂E
E
)

, (2.24)

is manifestly asymmetric as a result of ponderomotive, polarization and magnetization
effects appearing in the last line of (2.24).
The apparent asymmetry of the reduced stress tensor (2.24) implies that the azimuthal

angular momentum may not be conserved:

∂Pϕ

∂t
+ ∇ · T ϕ = T� : ∇(∂x/∂ϕ) ≡ ẑ ·

(∫
p
f̄ N̄
)

, (2.25)

unless the reduced torque N̄ vanishes identically. In (2.25), Pϕ ≡ P · ∂x/∂ϕ is
the azimuthal angular momentum density, T ϕ ≡ T · ∂x/∂ϕ is the azimuthal angular
momentum-density flux, T� denotes the transpose of T and, since the dyadic tensor
∇(∂x/∂ϕ) is antisymmetric, the reduced torque N̄ is expressed as

N̄ ≡ dx̄
dt

× mv̄ − (π̄ × E + μ̄ × B) , (2.26)

which includes contributions from the electric and magnetic torques. The required
symmetry of the reduced stress tensor (2.24) must, therefore, introduce constraints on the
reduced polarization and magnetization, which force the reduced torque (2.26) to vanish
identically.

2.3. Guiding-centre Vlasov–Maxwell equations
The apparent asymmetry of the guiding-centre stress tensor was independently noted by
Pfirsch & Morrison (1985) and Similon (1985), using different variational formulations. It
was recently shown by Brizard & Tronci (2016) and Sugama et al. (2016), however, that the
guiding-centre stress tensor is indeed explicitly symmetric. Here, we use the variational
formulation of the guiding-centre Vlasov–Maxwell model of Brizard & Tronci (2016)
to show that the guiding-centre torque, derived from the generic reduced torque (2.26),
vanishes identically.
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8 A.J. Brizard

In the work of Brizard & Tronci (2016), which considers the simplest case E = 0, the
guiding-centre canonical momentum is defined as p̄ = (e/c)A + p̄‖ b̂, which implies that
v̄ = (p̄‖/m) b̂ and the guiding-centre electric and magnetic dipole moments are

π̄ = (eb̂/Ω) × dx̄/dt = (eb̂/Ω) × ∂Ψ̄ /∂ p̄,

μ̄ = −μ̄b̂ + π̄ × (p̄‖b̂/mc).

}
(2.27)

Hence, using (2.2) and (2.27), we easily verify that the guiding-centre torque (2.26)
vanishes:

N̄ = dx̄
dt

× mv̄ −
(

−μ̄b̂ + π̄ × p̄‖b̂
mc

)
× B =

(
−mv̄ + p̄‖b̂

)
× dx̄

dt
≡ 0, (2.28)

and the guiding-centre stress tensor (2.23) is symmetric (Sugama et al. 2016; Brizard &
Tronci 2016):

T gc = 1
4π

(
I
2
|B|2 − BB

)
+
∫
p̄
f̄
[
m
dx̄
dt

(
dx̄
dt

− ∂Ψ̄

∂ p̄

)
+ I

(
B · ∂Ψ̄

∂B

)
− B

∂Ψ̄

∂B

]

= 1
4π

(
I
2
|B|2 − BB

)
+ PCGL +

∫
p̄
f̄
[
p̄‖

(
∂Ψ̄

∂ p̄
b̂ + b̂

∂Ψ̄

∂ p̄

)]
, (2.29)

where PCGL = ∫p̄ f̄ [(p̄2‖/m)b̂b̂ + μ̄B(I − b̂b̂)] is the symmetric Chew–Goldberger–Low
pressure tensor and the ponderomotive velocity ∂Ψ̄ /∂ p̄, which is assumed to be
perpendicular to B, represents the magnetic-drift velocity.

3. Gauge-free gyrocentre Lagrangian dynamics

In this section, we present two gauge-free gyrokinetic models whose gyrocentre
equations of motion only involve the perturbed electromagnetic fields (E1,B1), thereby
guaranteeing gauge freedom. Here, the separation of the perturbed magnetic field B1
from the unperturbed (equilibrium) magnetic field B0 satisfies the perturbed Faraday’s law
∂B1/∂t ≡ −c∇ × E1, while the equilibrium magnetic field B0 is assumed to be toroidally
axisymmetric, so that ∂B0/∂ϕ ≡ ẑ × B0.
Gauge-free electromagnetic gyrokinetic Vlasov–Maxwell models were recently derived

in the Hamiltonian representation by Burby & Brizard (2019) and in the symplectic
representation by Brizard (2020). The general form of the gauge-free gyrocentre
Lagrangian is defined on gyrocentre phase space, with coordinates (X , p‖, μ, ζ ), as

Lgy =
[e
c

(
A∗

0 + εA1gy
)+ Πgy

]
· Ẋ + Jζ̇ − (eεΦ1gy + Kgy

) ≡ Pgy · Ẋ + Jζ̇ − Hgy,

(3.1)
where the gyrocentre gyroaction J ≡ (mc/e)μ (which is canonically conjugate to the
gyrocentre gyroangle ζ ) is used here only as a matter of convenience, and

(e/c)A∗
0 ≡ (e/c)A0 + p‖ b̂0 − J

(
R0 + 1

2
∇ × b̂0

)
(3.2)

is expressed in terms of the unperturbed (equilibrium) magnetic field B0 = ∇ × A0 =
B0 b̂0, and (3.2) includes the gyrogauge vector field R0 ≡ ∇1̂ · 2̂ (where b̂0 ≡ 1̂ × 2̂)
and higher-order guiding-centre corrections (Tronko & Brizard 2015) associated with
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Gauge-free electromagnetic gyrokinetic equations 9

the guiding-centre electric dipole moment πgc ≡ (eb̂0/Ω0) × Ẋ gc. Similar higher-order
guiding-centre corrections are retained by Fan et al. (2020), with the main difference
that, in our work, these guiding-centre terms are explicitly time-independent (and
non-variational).

3.1. Gauge-free gyrocentre models
In the gyrocentre Hamiltonian model of Burby & Brizard (2019), presented here in the
drift-kinetic limit considered by Hirvijoki et al. (2020), we find the definitions

(Φ1gy,A1gy,Πgy) = (Φ1,A1, 0), (3.3)

where the perturbation fields are evaluated at the gyrocentre position X and the gyrocentre
kinetic energy is

Kgy = p2‖
2m

+ μ

(
B0 + εB1‖ + ε2

2
|B1|2
B0

)
− πgc · ε

(
E1 + ( p‖b̂0/mc) × B1

)

− ε2
mc2

2B2
0

∣∣∣E1 + ( p‖b̂0/mc) × B1

∣∣∣2 , (3.4)

where B1‖ ≡ b̂0 · B1 denotes the parallel component of the perturbed magnetic field
B1. We note that the gauge-free model considered by Hirvijoki et al. (2020) omits
the guiding-centre electric dipole moment πgc in the gyrocentre kinetic energy (3.4)
and, thus, the gyrocentre polarization and magnetization derived without this term are
incomplete. We explicitly show in § 5, however, that this omission does not jeopardize the
energy–momentum conservation laws.
Next, in the gyrocentre symplectic model of Brizard (2020), we find

(Φ1gy,A1gy) = (〈Φ1gc〉, 〈A1gc〉),
Πgy = ε

(
〈E1gc〉 + ( p‖b̂0/mc) × 〈B1gc〉

)
× eb̂0/Ω0,

⎫⎬
⎭ (3.5)

where perturbation fields are evaluated at X + ρ0, with 〈· · · 〉 denoting the standard
gyroangle averaging (since the lowest-order guiding-centre gyroradius ρ0 depends on the
gyrocentre gyroangle ζ ), and the gyrocentre kinetic energy is

Kgy = p2‖
2m

+ μ

(
B0 + ε〈〈B1‖gc〉〉 + ε2

2
|B1|2
B0

)

+ ε2
mc2

2B2
0

∣∣∣E1 + ( p‖b̂0/mc) × B1

∣∣∣2 . (3.6)

In (3.6), the finite-Larmor-radius effects are included only at first order in the perturbation
expansion, with 〈〈· · · 〉〉 denoting the gyrosurface averaging introduced by Porazik & Lin
(2011).
Previous symplectic gyrokinetic models considered either the parallel component

〈A1‖gc〉 of the perturbed vector potential (Hahm et al. 1988; Brizard 2017) or the inclusion
of the perturbed E × B velocity (Wang & Hahm 2010a,b; Leerink, Parra & Heikkinen
2010), or both (Duthoit, Hahm&Wang 2014). In the present symplectic gyrokinetic model
(3.5) and (3.6), the addition of the perturbed magnetic flutter momentum to the E × B
momentum yields a covariant treatment of the electric dipole moment in the gyrocentre

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377821000519
Downloaded from https://www.cambridge.org/core. IP address: 24.147.94.139, on 25 May 2021 at 10:25:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377821000519
https://www.cambridge.org/core


10 A.J. Brizard

polarization and magnetization; see (3.23)–(3.26). In their guiding-centre treatment, Fan
et al. (2020) considered an extension of the Pfirsch & Morrison (1985) variational
formulation by including higher-order guiding-centre corrections, where both electric and
magnetic fields (E,B = Bb̂) are considered as variational fields.

3.2. Gyrocentre Euler–Lagrange equations
The gyrocentre Euler–Lagrange equations involving arbitrary variations in (X , p‖, J) are,
respectively,

0 = eE∗
gy + e

c
Ẋ × B∗

gy − ṗ‖b∗
gy, (3.7)

0 = Ẋ · b∗
gy − ∂Kgy/∂p‖, (3.8)

0 = ζ̇ + Ẋ · ∂Pgy/∂J − ∂Hgy/∂J, (3.9)

where the effective gyrocentre electric field E∗
gy is defined as

eE∗
gy ≡ −∇Hgy − ∂Pgy

∂t
= εeE1gy −

(
∂Πgy

∂t
+ ∇Kgy

)
, (3.10)

with E1gy ≡ −∇Φ1gy − c−1∂A1gy/∂t. The effective gyrocentre magnetic field B∗
gy is

defined as

B∗
gy ≡ ∇ ×

(c
e
Pgy

)
= B∗

0 + εB1gy + ∇ ×
(c
e
Πgy

)
, (3.11)

with B∗
0 ≡ ∇ × A∗

0 and B1gy ≡ ∇ × A1gy, while

b∗
gy ≡ ∂Pgy/∂p‖ = b̂0 + ∂Πgy/∂p‖. (3.12)

We note that the effective gyrocentre electromagnetic fields satisfy the source-free
Maxwell equations ∇ · B∗

gy = 0 and ∂B∗
gy/∂t + c∇ × E∗

gy = 0.
The gyrocentre Euler–Lagrange equations (3.7) and (3.8) can also be written in

Hamiltonian form as

Ẋ ≡ {X ,Hgy
}
gy = E∗

gy × cb∗
gy

B∗∗
‖gy

+ ∂Kgy

∂p‖

B∗
gy

B∗∗
‖gy

, (3.13)

ṗ‖ ≡ {p‖,Hgy
}
gy = eE∗

gy · B∗
gy

B∗∗
‖gy

, (3.14)

where { , }gy denotes the gyrocentre Poisson bracket and B∗∗
‖gy ≡ b∗

gy · B∗
gy. We note that

(3.13) and (3.14) satisfy the Euler–Lagrange identity:

∂Kgy

∂p‖
ṗ‖ = eE∗

gy · ∂Kgy

∂p‖

B∗
gy

B∗∗
‖gy

≡ eE∗
gy · Ẋ , (3.15)
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Gauge-free electromagnetic gyrokinetic equations 11

which will be useful in our discussion of energy conservation. The gyrocentre equations
(3.13) and (3.14) also satisfy the Liouville theorem:

∂B∗∗
‖gy

∂t
= ∂b∗

gy

∂t
· B∗

gy + b∗
gy · ∂B∗

gy

∂t
= ∂

∂p‖

(
∂Pgy

∂t

)
· B∗

gy − b∗
gy · ∇ × (cE∗

gy

)

= − ∂

∂p‖

[∇ · (HgyB∗
gy

)+ ṗ‖ B∗∗
‖gy
]− ∂Pgy

∂t
· ∇ ×

(cb∗
gy

e

)

− ∇ ·
[
B∗∗

‖gyẊ − ∂

∂p‖

(
HgyB∗

gy

)]− (eE∗
gy + ∇Hgy

) · ∇ ×
(cb∗

gy

e

)

= −∇ · (B∗∗
‖gy Ẋ

)− ∂

∂p‖

(
B∗∗

‖gy ṗ‖
)
, (3.16)

where we used (3.10).

3.3. Eulerian field variations of the gyrocentre Lagrangian
In the next section, we will need the Eulerian field variation of the gyrocentre Lagrangian
(3.1) at a field point x:

δLgy =
(e
c
εδA1gy + δΠgy

)
· Ẋ − (eεδΦ1gy + δKgy

)
, (3.17)

where, in contrast to the works of Sugama et al. (2021) and Fan et al. (2020),
the guiding-centre Lagrangian terms (e/c)A∗

0 · Ẋ + Jζ̇ − ( p2‖/2m + μB0) are invariant
in our gyrokinetic formalism. While Sugama et al. (2021) considered the simplest
guiding-centre representation (with eA∗

0/c = eA0/c + p‖b̂), with field variations easily
computed (e.g. δb̂ = (b̂ × δB) × b̂/B), the higher-order guiding-centre model used by
Fan et al. (2020) requires complex expressions for the variations of the gyrogauge vector
R0 = ∇1̂ · 2̂, for example, in which the functional derivatives of all three unit vectors
(1̂, 2̂, b̂ = 1̂ × 2̂) need to be computed, although they are not explicitly calculated.
Here, the field variations are defined in terms of the generic functional derivatives(

δΨ1(X )
〈δΨ1(X + ρ0)〉

)
≡
∫
x
δΨ1(x)

(
δ3(X − x)〈

δ3(X + ρ0 − x)
〉) , (3.18)

where Ψ1 denotes an arbitrary component of the perturbed electromagnetic potentials
or fields. We note that the second expression in (3.18) is valid only if the
equilibrium (non-variational) magnetic field appears in the definition of the lowest-order
gyroangle-dependent gyroradius ρ0. Hence, we find(

δΦ1gy

δΦ1(x)
,

δAi
1gy

δAj
1(x)

,
δEi

1gy

δE j
1(x)

,
δBi

1gy

δBj
1(x)

)
=
{(

δ3, δijδ
3, δijδ

3, δijδ
3
)(〈δ3gc〉, δij〈δ3gc〉, δij〈δ3gc〉, δij〈δ3gc〉) (3.19)

and (
δB1‖(X )

δB1(x)
,
δ〈〈B1‖gc〉〉
δB1(x)

)
=
(
δ3b̂0, 〈〈δ3gc〉〉b̂0

)
, (3.20)

with δ3 ≡ δ3(X − x) and δ3gc ≡ δ3(X + ρ0 − x) used in the gyrocentre models of Burby
& Brizard (2019) and Brizard (2020), respectively, and δij denotes the standard Kronecker
delta.
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12 A.J. Brizard

In the gyrocentre model (3.4) of Burby & Brizard (2019), we find

ε−1 δKgy

δE1(x)
= −δ3

[
πgc + ε

mc2

B2
0

(
E1 + p‖b̂0

mc
× B1

)]
≡ −δ3

(
πgc + επ2

)
, (3.21)

ε−1 δKgy

δB1(x)
= δ3μ

(
b̂0 + ε

B1

B0

)
− δ3

(
πgc + επ2

)× p‖b̂0

mc
, (3.22)

where the gyrocentre electric dipole moment πgc + επ2 includes the guiding-centre
contribution πgc and its first-order gyrocentre correction π2 (derived from the
second-order gyrocentre Hamiltonian), while the intrinsic gyrocentre magnetic dipole
moment −μ(b̂0 + εB1/B0) is accompanied by the moving gyrocentre electric dipole
moment contribution (πgc + επ2) × p‖b̂0/mc.
In the gyrocentre model (3.5) and (3.6) of Brizard (2020), on the other hand, we find

ε−1 δΠgy

δE1(x)
· Ẋ = 〈δ3gc〉

eb̂0

Ω0
× Ẋ ≡ 〈δ3gc〉πgy. (3.23)

ε−1 δΠgy

δB1(x)
· Ẋ = 〈δ3gc〉

(
πgy × p‖b̂0

mc

)
, (3.24)

and

ε−1 δKgy

δE1(x)
= εδ3

mc2

B2
0

(
E1 + p‖b̂0

mc
× B1

)
≡ εδ3π2, (3.25)

ε−1 δKgy

δB1(x)
= μ

(
〈〈δ3gc〉〉b̂0 + εδ3B1/B0

)
+ εδ3

(
π2 × p‖b̂0

mc

)
. (3.26)

We note that the gyrocentre polarization and magnetization derived from (3.21) and
(3.22) for the gyrokinetic model of Burby & Brizard (2019) are explicitly truncated at
first order in the perturbation amplitudes of the electric and magnetic fields (E1,B1).
Because the gyrocentre velocity (3.13) appears in the expressions (3.23) and (3.24) for the
gyrokinetic model of Brizard (2020), however, the corresponding gyrocentre polarization
and magnetization contain contributions at higher orders in perturbation amplitude.

4. Gyrokinetic variational principle

The gyrokinetic Vlasov–Maxwell equations can be derived from several equivalent
variational principles: Low–Lagrange (Sugama 2000); Euler (Brizard 2000a,b, 2009,
2010a, 2017); Hamilton–Jacobi (Correa-Restrepo & Pfirsch 2004); and Euler–Poincaré
(Squire et al. 2013; Hirvijoki et al. 2020). In recent work, Brizard & Tronci (2016) showed
how the guiding-centre Vlasov–Maxwell equations (derived without a separation between
time-independent equilibrium and variational dynamical plasma fields) can be explicitly
derived from many of these equivalent variational principles.
In the present work, the separation of equilibrium and perturbed electromagnetic

fields introduces a low-frequency gyrokinetic space–time ordering that assumes that
the non-uniform equilibrium magnetic field is time-independent and non-variational.
Applications of Noether’s theorem, which explicitly take into account the properties of the
equilibrium magnetic field, follow most naturally from an Eulerian
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Gauge-free electromagnetic gyrokinetic equations 13

variational principle. In recent work, Hirvijoki et al. (2020) derived the energy–momentum
and angular momentum conservation laws (without proof) within an Euler–Poincaré
variational formulation for the Vlasov–Maxwell and drift-kinetic Vlasov–Maxwell
equations described by the gauge-free gyrocentre model of Burby & Brizard (2019).
We are now ready to derive the gauge-free gyrokinetic Vlasov–Maxwell equations from

an Eulerian variational principle δAgy = 0, based on the gyrokinetic action functional
(Brizard 2000b)

Agy ≡ −
∫

FgyHgy d8Z +
∫

d4x
8π

(|E|2 − |B|2) , (4.1)

where summation over particle species is implicitly assumed in the first term and the
infinitesimal extended phase-space volume element d8Z does not include the Jacobian
Jgy. Instead, the perturbation-field-dependent Jacobian is inserted in the definition of the
gyrocentre extended Vlasov density:

Fgy ≡ JgyF ≡ JgyFδ(w − Hgy), (4.2)

which also includes an energy delta function that enforces the constraintHgy = Hgy − w ≡
0 in extended gyrocentre phase space.
The variation of the gyrokinetic action functional yields

δAgy = −
∫ (

δFgyHgy + FgyδHgy
)
d8Z +

∫
d4x
4π

(εδE1 · E − εδB1 · B) , (4.3)

where the constrained electromagnetic variations

δE1(x) ≡ −∇δΦ1(x) − c−1∂tδA1(x),

δB1(x) ≡ ∇ × δA1(x)

}
(4.4)

satisfy the Faraday constraint equation ∇δE1 + c−1∂δB1/∂t = 0 and ∇ · δB1 = 0, with
the equilibrium magnetic field B0 held constant under field variations. The variation of the
gyrocentre Hamiltonian

δHgy = εeδΦ1gy + δE1 · δKgy

δE1
+ δB1 · δKgy

δB1
(4.5)

is expressed in terms of δΦ1 and (δE1, δB1). The variation of the gyrocentre extended
Vlasov density δFgy ≡ δJgyF + JgyδF is expressed as

δFgy = F
(

∂δPgy

∂p‖
· e
c
B∗

gy + b∗
gy · ∇ × δPgy

)
+ Jgy

({δS,F}gy + δPgy · {X ,F}gy
)

≡ − ∂

∂Za

(
δZaFgy

)
, (4.6)

where the virtual extended phase-space displacement

δZa ≡ {Za, δS}gy − δPgy · {X ,Za}gy (4.7)

is defined in terms of a canonical part generated by δS and a non-canonical part generated
by

δPgy = ε
e
c
δA1gy + δE1 · ∂Πgy

∂E1
+ δB1 · ∂Πgy

∂B1
. (4.8)
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14 A.J. Brizard

We note that the final form in (4.6) for the Eulerian variation δFgy is a natural phase-space
generalization of the variation δn = −∇ · (δx n) for the fluid particle density n. In
addition, in the Hamiltonian model of Burby & Brizard (2019), the last two terms are
absent.
The first two variations in the Vlasov term in (4.3) can be combined:

−δ(FgyHgy) = −Jgy{F ,Hgy}gyδS + FgyδLgy

+ ∂

∂t

(FgyδS
)+ ∇ · (ẊFgyδS

)+ ∂

∂p‖

(
ṗ‖ FgyδS

)
, (4.9)

where the variation of the gyrocentre Lagrangian (3.1) is

δLgy ≡ ε
(e
c
δA1gy · Ẋ − eδΦ1gy

)
+ δE1 ·

(
∂Πgy

∂E1
· Ẋ − ∂Kgy

∂E1

)

+ δB1 ·
(

∂Πgy

∂B1
· Ẋ − ∂Kgy

∂B1

)
. (4.10)

Using (3.19) and (3.21)–(3.22) or (3.23)–(3.26), the Lagrangian variation term∫
Z
FgyδLgy =

∫
x

(ε

c
δA1 · J gy − εδΦ1�gy + εδE1 · Pgy + εδB1 · Mgy

)
(4.11)

can be expressed in terms of the gyrocentre charge and current densities:

(
�gy(x), J gy(x)

) ≡
∫
Z
Fgy

(
−ε−1 δLgy

δΦ1(x)
, ε−1 δLgy

δA1(x)

)

=
∫
Z
Fgy

(
e

δΦ1gy

δΦ1(x)
, e

δA1gy

δA1(x)
· Ẋ
)

(4.12)

and the gyrocentre polarization and magnetization:

Pgy(x) ≡
∫
Z
Fgyε

−1 δLgy

δE1(x)
=
∫
Z
Fgy

(
ε−1 δΠgy

δE1(x)
· Ẋ − ε−1 δKgy

δE1(x)

)
, (4.13)

Mgy(x) ≡
∫
Z
Fgyε

−1 δLgy

δB1(x)
=
∫
Z
Fgy

(
ε−1 δΠgy

δB1(x)
· Ẋ − ε−1 δKgy

δB1(x)

)
. (4.14)

When the gauge-free gyrokinetic models represented by (3.3)–(3.4) and (3.5)–(3.6) are
used, the gyrocentre polarization is given for the Burby & Brizard (2019) model (top) and
the Brizard (2020) model (bottom) as

Pgy(x) =
∫
Z
Fgy

{
δ3
(
πgc + επ2

)
〈δ3gc〉πgy − εδ3π2,

(4.15)

where π2 and πgy are defined in (3.21) and (3.23), respectively, and the gyrocentre
magnetization is

Mgy(x) =
∫
Z
Fgy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δ3
[
−μ

(
b̂0 + εB1/B0

)
+ (πgc + επ2

)× ( p‖b̂0/mc)
]

− μ
(
〈〈δ3gc〉〉b̂0 + εδ3B1/B0

)
+ (〈δ3gc〉πgy − εδ3π2

)× ( p‖b̂0/mc).

(4.16)
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Gauge-free electromagnetic gyrokinetic equations 15

We note, here, that the lowest-order guiding-centre contributions to polarization and
magnetization are derived from the first-order gyrocentre Lagrangian, which circumvents
the need to consider guiding-centre variations as in the works of Sugama et al. (2021) and
Fan et al. (2020).
The variation of the Maxwell Lagrangian density can be expressed as

δE1 · E − δB1 · B = δA1 ·
(
1
c

∂E
∂t

− ∇ × B
)

+ δΦ1(∇ · E)

− ∂

∂t

(
1
c
δA1 · E

)
− ∇ · (δΦ1E + δA1 × B) . (4.17)

If we now combine (4.9)–(4.17) into the variation of the gyrokinetic action functional
(4.3), δAgy ≡ ∫ δLgy d4 x, we obtain the variation of the gyrokinetic Lagrangian density:

δLgy = −
∫
P
Jgy{F ,Hgy}gyδS + εδΦ1

4π

(∇ · Dgy − 4π�gy
)

+ ε

4π
δA1 ·

(
1
c

∂Dgy

∂t
− ∇ × Hgy + 4π

c
J gy

)

+ ∂

∂t

(∫
P
FgyδS − ε

4π
δA1 · Dgy

)

+ ∇ ·
(∫

P
ẊFgyδS − ε

4π

(
δΦ1Dgy + δA1 × Hgy

))
, (4.18)

where the gyrocentre macroscopic electromagnetic fields are defined as

Dgy ≡ εE1 + 4πPgy,

Hgy ≡ B0 + εB1 − 4πMgy,

}
(4.19)

and the variations (δS, δΦ1, δA1) are assumed to be arbitrary. Variation with respect to
δS yields the gyrokinetic Vlasov equation in extended phase space {F ,Hgy}gy = 0. If we
integrate Jgy{F ,Hgy}gy over the energy w coordinate, we find

0 =
∫

Jgy{F ,Hgy}gy dw =
∫

∂

∂Za

(JgyFŻa
)
dw

= ∂(JgyF)

∂t
+ ∇ · (JgyFẊ

)+ ∂

∂p‖

(
JgyF ṗ‖

)

≡ Jgy

(
∂F
∂t

+ Ẋ · ∇F + ṗ‖
∂F
∂p‖

)
, (4.20)

where we have used the Liouville theorem (3.16) to obtain the last expression in order to
recover the gyrokinetic Vlasov equation.
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16 A.J. Brizard

Next, the variation with respect to the electromagnetic potentials (δΦ1, δA1) yields the
macroscopic gyrokinetic Maxwell equations:

∇ · Dgy = 4π�gy, (4.21)

∇ × Hgy = 1
c

∂Dgy

∂t
+ 4π

c
J gy, (4.22)

which can also be expressed as the microscopic Maxwell equations:

∇ · εE1 = 4π
(
�gy − ∇ · Pgy

)
, (4.23)

∇ × (B0 + εB1) = ε

c
∂E1

∂t
+ 4π

c

(
J gy + ∂Pgy

∂t
+ c∇ × Mgy

)
. (4.24)

These equations are complemented by Faraday’s law

∂B1

∂t
+ c∇ × E1 = 0 (4.25)

and ∇ · B1 = 0. Now that the gyrokinetic Vlasov–Maxwell equations (4.20)–(4.22) have
been derived from a variational principle, we use the remaining part of the gyrokinetic
Lagrangian density variation (4.18) to derive exact conservation laws.

5. Gyrokinetic Noether equation and conservation laws

The variational derivation of the reduced Vlasov–Maxwell equations guarantees that
these reduced equations satisfy exact energy–momentum conservation laws (Pfirsch
& Morrison 1985; Similon 1985; Correa-Restrepo & Pfirsch 2004; Brizard 2008). In
particular, the exact conservation of the gyrokinetic Vlasov–Maxwell energy (Brizard
1989b, 2010a) has played an important role in the numerical implementation of the
energy-conserving gyrokinetic equations (Garbet et al. 2010).
For this purpose, the remaining terms in (4.18) are combined to yield the gyrokinetic

Noether equation:

δLgy = ∂

∂t

(∫
P
FgyδS − ε

4πc
δA1 · Dgy

)

+ ∇ ·
[∫

P
ẊFgyδS − ε

4π

(
δΦ1Dgy + δA1 × Hgy

)]
, (5.1)

where the variations are now explicitly expressed in terms of the space–time displacements
δx and δt:

δS ≡ Pgy · δx − wδt,

δΦ1 ≡ −δx · ∇Φ1 − δt∂Φ1/∂t = E1 · δx − c−1∂δχ1/∂t,

δA1 ≡ −δx · ∇A1 − δt∂A1/∂t = E1cδt + δx × B1 + ∇δχ1,

⎫⎪⎬
⎪⎭ (5.2)

with the gauge variation δχ1 defined as δχ1 ≡ Φ1cδt − A1 · δx. Upon rearranging the
gauge variation δχ1, and using the identity

− ∂

∂t

(∇δχ1 · Dgy
)+ ∇ ·

(
∂δχ1

∂t
Dgy − c∇δχ1 × Hgy

)

= ∂

∂t

(
δχ1∇ · Dgy

)− ∇ ·
[
δχ1

(
∂Dgy

∂t
− c∇ × Hgy

)]
, (5.3)
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Gauge-free electromagnetic gyrokinetic equations 17

with the macroscopic gyrokinetic Maxwell equations (4.21)–(4.22), we obtain the
gauge-invariant form of the gyrokinetic Noether equation (5.1):

δLgy = ∂δNgy/∂t + ∇ · δΓ gy, (5.4)

where the action-density variation is

δNgy =
∫
P
Fgy

(
δS + ε

e
c
δχ1gy

)
−
(
εE1δt + δx × ε

c
B1

)
· Dgy

4π
(5.5)

and the action-density-flux variation is

δΓ gy =
∫
P
Ẋ Fgy

(
δS + ε

e
c
δχ1gy

)
− δx ·

( ε

4π
E1Dgy

)
+ ε

4π
(E1cδt + δx × B1) × Hgy. (5.6)

Here, the gauge-invariant terms are

δS + ε
e
c
δχ1gy =

(
Pgy − ε

e
c
A1gy

)
· δx − (w − εeΦ1gy

)
δt

=
(e
c
A∗

0 + Πgy

)
· δx − (Kgy − Hgy

)
δt. (5.7)

We note that the guiding-centre vector potential A∗
0, which yields the unperturbed

equilibrium magnetic field B∗
0 = ∇ × A∗

0, is not subject to a gauge transformation.
A complete expression for the gyrokinetic Noether equation (5.4) also requires an

explicit expression for the Lagrangian variation δLgy on the left-hand side of (5.4). For
the derivation of the momentum–energy conservation laws, we consider the specific
space–time variations of the gyrokinetic Lagrangian density:

δLgy = −
(

δt
∂

∂t
+ δx · ∇

)[
1
8π

(
ε2|E1|2 − |B|2)]

+ δx ·
[∫

P
JgyF

(∇′Pgy · Ẋ − ∇′Kgy
)− ∇B0 · B

4π

]
, (5.8)

where the gradient operator ∇′ only takes into account the non-uniformity of the
equilibrium magnetic field, i.e. the first-order fields (Φ1,A1,E1,B1) are frozen at a
fixed position x so that, for example, ∇′Φ1gy = 0 and ∇′〈〈B1‖gc〉〉 = ∇b̂0 · 〈〈B1gc〉〉. It is
in the second line of (5.8) that the Noether theorem draws its full force. In addition,
the w-integration was performed to leave the standard gyrocentre Vlasov distribution
F(X , p‖, μ, t), with

∫
P now denoting an integration over ( p‖, μ).

The final form of the gyrokinetic Noether equation is obtained by equating (5.4) and
(5.8), where the virtual space–time displacements (δx, δt) appear explicitly:

∂

∂t

[
δNgy + δt

8π

(
ε2|E1|2 − |B|2)]+ ∇ ·

[
δΓ gy + δx

8π

(
ε2|E1|2 − |B|2)]

= δx ·
[∫

P
JgyF

(∇′Pgy · Ẋ − ∇′Kgy
)− ∇B0 · B

4π

]
. (5.9)

This form of the Noether theorem relies on the constrained variations (4.4), (4.6) and (5.2),
which is in contrast to the more traditional formulation based on the connection between
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18 A.J. Brizard

conservation laws and symmetries of the Vlasov–Maxwell Lagrangian (see, for example,
Hirvijoki et al. (2020) and references therein). Here, for each conservation law derived
from our gyrokinetic Noether equation (5.9), we also present an explicit proof based on
the gyrokinetic Vlasov–Maxwell equations (4.20)–(4.22).

5.1. Gyrokinetic energy conservation law
Since the equilibrium magnetic field B0 is time-independent, the total energy associated
with the gyrokinetic Vlasov–Maxwell equations (4.20)–(4.22) is conserved. We derive
the energy conservation law from the gyrokinetic Noether equation by setting δt 
= 0 and
δx = 0 in (5.9), which yields the gyrokinetic energy conservation law:

∂Egy/∂t + ∇ · Sgy = 0, (5.10)

where the gyrokinetic energy density is

Egy =
∫
P
JgyFKgy + ε

4π
E1 · Dgy − 1

8π

(
ε2|E1|2 − |B|2)

=
∫
P
JgyF

[
p2‖
2m

+ μ

(
B0 + ε〈〈B1‖gc〉〉 + ε2

2
|B1|2
B0

)

+E1(x) ·
(

δΠgy

δE1(x)
− δKgy

δE1(x)

)]
+ 1

8π

(
ε2|E1|2 + |B|2) , (5.11)

while the gyrokinetic energy-density flux is

Sgy =
∫
P
JgyFẊKgy + c

4π
εE1 × Hgy, (5.12)

where the polarization and magnetization (Pgy,Mgy) are defined in (4.13) and (4.14),
with Hgy defined in (4.19). In addition, we note that the gyrokinetic polarization and
magnetization (Pgy,Mgy) include the full gyrocentre velocity Ẋ defined in (3.13), which
is expressed in terms of the effective electric and magnetic fields (3.10)–(3.11). We also
note that, as shown by Burby et al. (2015), the gyrokinetic Vlasov–Maxwell Hamiltonian
functional is naturally derived from the gyrokinetic energy density (5.11).
The explicit proof of gyrokinetic energy conservation, which applies to both gauge-free

gyrokinetic models (Burby & Brizard 2019; Brizard 2020) considered here, proceeds as
follows. First, we begin with the partial time derivative of the gyrokinetic energy density
(5.11):

∂Egy

∂t
=
∫
P

[
∂(JgyF)

∂t
Kgy + JgyF

(
∂E1

∂t
· ∂Kgy

∂E1
+ ∂B1

∂t
· ∂Kgy

∂B1

)]

+ εE1

4π
· ∂Dgy

∂t
+ ε

∂E1

∂t
· Pgy + B

4π
· ε

∂B1

∂t
, (5.13)

where we expanded the term ∂Kgy(E1,B1)/∂t and used the definition (4.19) forDgy. Using
the phase-space divergence form (4.20) of the gyrokinetic Vlasov equation, the first term
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Gauge-free electromagnetic gyrokinetic equations 19

on the right-hand side can be expressed as∫
P

∂(JgyF)

∂t
Kgy = −∇ ·

(∫
P
JgyFKgyẊ

)
+
∫
P
JgyF

(
∂Kgy

∂p‖
ṗ‖ + Ẋ · ∇Kgy

)
, (5.14)

while, using the definitions (4.13) and (4.14) of the gyrokinetic polarization and
magnetization, the gyrokinetic kinetic terms in (5.13) can be expressed as∫

P
JgyF

∂Kgy

∂t
= −ε

(
∂E1

∂t
· Pgy + ∂B1

∂t
· Mgy

)
+
∫
P
JgyF

(
∂Πgy

∂t
· Ẋ
)

. (5.15)

By combining these expressions, (5.13) becomes

∂Egy

∂t
= −∇ ·

(∫
P
JgyFKgy Ẋ

)
+ Hgy

4π
· ε

∂B1

∂t
+ εE1

4π
· ∂Dgy

∂t

+
∫
P
JgyF

[
∂Kgy

∂p‖
ṗ‖ + Ẋ ·

(
∇Kgy + ∂Πgy

∂t

)]
, (5.16)

where we introduced the definition (4.19) for Hgy. Next, we use Faraday’s law (4.25) to
write

Hgy

4π
· ε

∂B1

∂t
= −cHgy

4π
· ∇ × εE1 = −∇ ·

( c
4π

εE1 × Hgy

)
− εE1

4π
· c∇ × Hgy,

(5.17)

so that (5.16) becomes

∂Egy

∂t
+ ∇ · Sgy = −εE1

4π
·
(
c∇ × Hgy − ∂Dgy

∂t

)

+
∫
P
JgyF

[
∂Kgy

∂p‖
ṗ‖ + Ẋ ·

(
∇Kgy + ∂Πgy

∂t

)]
, (5.18)

where we reconstructed the gyrokinetic energy-density flux (5.12) on the left-hand side of
(5.18). Lastly, we use the identity derived from (3.10):

∇Kgy + ∂Πgy

∂t
= e

(
εE1gy − E∗

gy

)
, (5.19)

and we use the macroscopic gyrokinetic Maxwell equation (4.22), with

−εE1

4π
·
(
c∇ × Hgy − ∂Dgy

∂t

)
= −εE1 · J gy = −

∫
P
JgyF

(
εeE1gy · Ẋ ) , (5.20)

to obtain
∂Egy

∂t
+ ∇ · Sgy =

∫
P
JgyF

(
∂Kgy

∂p‖
ṗ‖ − Ẋ · eE∗

gy

)
. (5.21)

Using the Euler–Lagrange identity (3.15), the right-hand side of (5.21) is shown to vanish
identically and we readily recover the exact gyrokinetic energy conservation law.
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20 A.J. Brizard

5.2. Gyrokinetic Noether momentum equation
Because the equilibrium magnetic field B0 considered in standard gyrokinetic
Vlasov–Maxwell theory is spatially non-uniform (i.e. it serves to magnetically confine
charged particles in accordance with the guiding-centre approximation), a general
gyrokinetic Vlasov–Maxwell momentum conservation law does not exist. Indeed,
according to the Noether theorem, the gyrokinetic Vlasov–Maxwell momentum is
conserved only in directions corresponding to symmetries of the equilibrium magnetic
field. Before we derive the gyrokinetic angular momentum conservation law associated
with an axisymmetric equilibrium magnetic field, we wish to show that the gyrokinetic
Noether momentum equation, from which our exact angular momentum conservation
law will be derived, is consistent with the gyrokinetic Vlasov–Maxwell equations
(4.20)–(4.22).
We begin with the gyrokinetic Noether momentum equation derived by setting δt = 0

and δx 
= 0 in (5.9):

∂P∗
gy

∂t
+ ∇ · T ∗

gy =
∫
P
JgyF

(e
c
∇A∗

0 · Ẋ + ∇′Πgy · Ẋ − ∇′Kgy

)
− ∇B0 · B

4π
, (5.22)

where the gyrokinetic canonical momentum density is defined as

P∗
gy =

∫
P
JgyF

(e
c
A∗

0 + Πgy

)
+ Dgy

4πc
× εB1 (5.23)

and the gyrokinetic canonical stress tensor is defined as

T ∗
gy =

∫
P
JgyFẊ

(e
c
A∗

0 + Πgy

)
− ε

4π

(
DgyE1 + B1Hgy

)
+ I

[
1
8π

(
ε2|E1|2 − |B|2)+ ε

4π
B1 · Hgy

]
, (5.24)

where I denotes the identity matrix. We note that, while the gyrokinetic stress tensor (5.24)
is manifestly not symmetric, the conservation of the gyrokinetic angular momentum will
follow exactly from (5.22).
We would now like to show that (5.22) is an exact consequence of the gyrokinetic

Vlasov–Maxwell equations (4.20)–(4.22). We begin with the partial time derivatives of
the first two terms in the gyrokinetic canonical momentum density (5.23):

∂

∂t

(∫
P
JgyF

e
c
A∗

0

)
= −∇ ·

(∫
P
JgyFẊ

e
c
A∗

0

)

+
∫
P
JgyF

(e
c
∇A∗

0 · Ẋ + ṗ‖ b̂0 − e
c
Ẋ × B∗

0

)
, (5.25)

∂

∂t

(∫
P
JgyFΠgy

)
= −∇ ·

(∫
P
JgyFẊΠgy

)
+
∫
P
JgyF

(∇Πgy · Ẋ − ∇Kgy
)

+
∫
P
JgyF

[
ṗ‖

∂Πgy

∂p‖
+ e

(
εE1gy − E∗

gy

)− Ẋ × ∇ × Πgy

]
,

(5.26)

where we used the phase-space divergence form (4.20) of the gyrokinetic Vlasov equation,
followed by integrations by parts, and used (5.19) to write ∂Πgy/∂t. By combining these
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Gauge-free electromagnetic gyrokinetic equations 21

two expressions, we obtain

∂

∂t

[∫
P
JgyF

(e
c
A∗

0 + Πgy

)]
= −∇ ·

[∫
P
JgyFẊ

(e
c
A∗

0 + Πgy

)]

+
∫
P
JgyF

[(e
c
∇A∗

0 + ∇Πgy

)
· Ẋ − ∇Kgy

]

+
∫
P
JgyF

[
ε
(
eE1gy + e

c
Ẋ × B1gy

)]

+
∫
P
JgyF

[
ṗ‖b∗

gy −
(
eE∗

gy + e
c
Ẋ × B∗

gy

)]
, (5.27)

where the last line vanishes as a result of the gyrocentre Euler–Lagrange equation (3.7).
Next, we take the partial time derivative of the third term in (5.23):

∂

∂t

(
Dgy

4πc
× εB1

)
= 1

4π

(
1
c

∂Dgy

∂t
× εB1 + Dgy × ε

c
∂B1

∂t

)

= (∇ × Hgy
)× εB1

4π
− Dgy

4π
× (∇ × εE1) −

∫
P
JgyF

(e
c
Ẋ × εB1gy

)

= ∇ ·
[

ε

4π

(
B1Hgy + DgyE1

)− I
4π

(
εB1 · Hgy + ε2

2
|E1|2 − 1

2
|B|2

)]

− ε
(∇E1 · Pgy + ∇B1 · Mgy

)− ∇B0 · B
4π

−
∫
P
JgyFε

(
eE1gy + e

c
Ẋ × B1gy

)
. (5.28)

When we combine (5.27) and (5.28), we obtain

∂P∗
gy

∂t
+ ∇ · T ∗

gy =
∫
P
JgyF

[(e
c
∇A∗

0 + ∇Πgy

)
· Ẋ − ∇Kgy

]

− ε
(∇E1 · Pgy + ∇B1 · Mgy

)− ∇B0 · B
4π

, (5.29)

where

−ε
(∇E1 · Pgy + ∇B1 · Mgy

) = −
∫
P
JgyF

(
∇E1 · δΠgy

δE1
+ ∇B1 · δΠgy

δB1

)
· Ẋ

+
∫
P
JgyF

(
∇E1 · δKgy

δE1
+ ∇B1 · δKgy

δB1

)

≡ −
∫
P
JgyF

[(∇Πgy − ∇′Πgy
) · Ẋ − (∇Kgy − ∇′Kgy

)]
.

(5.30)

By inserting these terms in (5.29), we recover the gyrokinetic Noether momentum
equation (5.22).
We note that, while the gyrokinetic Noether momentum equation (5.22) is not a

gyrokinetic conservation law, it can be used directly to obtain a gyrokinetic momentum
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22 A.J. Brizard

transport equation (e.g. in the parallel direction) by taking its projection in the desired
direction. For example, the gyrokinetic canonical parallel-momentum transport equation
is expressed as

∂P∗
gy‖

∂t
+ ∇ ·

(
T ∗

gy · b̂0

)
= T ∗�

gy : ∇b̂0 − b̂0 · ∇B0 · B/4π

+
∫
P
JgyF b̂0 ·

(e
c
∇A∗

0 · Ẋ + ∇′Πgy · Ẋ − ∇′Kgy

)
, (5.31)

where P∗
gy‖ ≡ P∗

gy · b̂0 and T ∗�
gy denotes the transpose of the gyrokinetic stress tensor

(5.24). The gyrokinetic canonical parallel-momentum transport equation (5.31) can be
transformed into a simpler form as the p‖-moment of the gyrokinetic Vlasov equation:

∂

∂t

(∫
P
JgyF p‖

)
+ ∇ ·

(∫
P
JgyFẊp‖

)
=
∫
P
JgyFṗ‖, (5.32)

where the gyrocentre parallel force ṗ‖ is defined by (3.14). See Brizard & Tronko (2011)
for the explicit transformation from (5.31) to (5.32) for the case of the gyrokinetic
Vlasov–Poisson equations. We note that the parallel contraction of the gyrokinetic stress
tensor T ∗

gy · b̂0 on the left-hand side of (5.31) contains the gyrokinetic Maxwell stress
tensor term −DgyεE1‖/4π, which plays a central role in the electrostatic gyrokinetic
Vlasov–Poisson model of McDevitt et al. (2009) in discussing toroidal rotation driven
by the gyrocentre polarization Pgy. In particular, McDevitt et al. (2009) show how
this polarization contribution can be retrieved from a perturbation expansion (up to
fourth order) of the right-hand side of (5.32) through a δF-decomposition of the
gyrocentre Vlasov distribution. Our gyrokinetic canonical parallel-momentum transport
equation (5.31), in contrast, explicitly exhibits the complete gyrocentre polarization and
magnetization effects in a full-F gyrokinetic Vlasov–Maxwell theory.

5.3. Gyrokinetic angular momentum conservation law
Assuming now that the equilibrium magnetic field B0 is axisymmetric (i.e. ∂B0/∂ϕ =
ẑ × B0), we derive the gyrokinetic canonical angular momentum conservation law by
taking the scalar product of (5.22) with ∂x/∂ϕ (i.e. δx = δϕ∂x/∂ϕ), where the toroidal
angle ϕ is associated with rotations about the z axis. Hence, the toroidal canonical
angular momentum density P∗

gyϕ ≡ P∗
gy · ∂x/∂ϕ satisfies the Noether canonical angular

momentum equation

∂P∗
gyϕ

∂t
+ ∇ ·

(
T ∗

gy · ∂x
∂ϕ

)
= T ∗�

gy : ∇
(

∂x
∂ϕ

)
− ∂B0

∂ϕ
· B
4π

+
∫
P
JgyF

(
e
c

∂A∗
0

∂ϕ
· Ẋ + ∂ ′Πgy

∂ϕ
· Ẋ − ∂ ′Kgy

∂ϕ

)
. (5.33)

Under the assumption that the equilibrium magnetic field is axisymmetric, we have
∂B0/∂ϕ ≡ 0 and we will use the identity ∂ b̂0/∂ϕ ≡ ẑ × b̂0, so that B · ∂B0/∂ϕ = εB1 ·
(ẑ × B0).
Instead of merely assuming that the right-hand side of (5.33) is zero, we now

systematically show how the various terms do cancel each other out to yield an exact
conservation law. Before we begin, however, we note that the first term vanishes identically
if the gyrokinetic stress tensor (5.24) is symmetric (i.e. T ∗�

gy = T ∗
gy), which is expected (and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377821000519
Downloaded from https://www.cambridge.org/core. IP address: 24.147.94.139, on 25 May 2021 at 10:25:55, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377821000519
https://www.cambridge.org/core


Gauge-free electromagnetic gyrokinetic equations 23

required) when there is no separation between dynamical fields and equilibrium fields, e.g.
in guiding-centre Vlasov–Maxwell theory (Brizard & Tronci 2016). In the present case,
however, the asymmetry of the gyrokinetic stress tensor (5.24) is necessary in order to
cancel the additional terms on the right-hand side of (5.33).
We now proceed with the proof that the right-hand side of (5.33) is zero for the

gauge-free model of Burby & Brizard (2019), where Πgy ≡ 0, and present the results
for the gauge-free model of Brizard (2020). First, we note that since the dyadic tensor
∇(∂x/∂ϕ) = R̂ ϕ̂ − ϕ̂ R̂ is antisymmetric (where R ≡ |∂x/∂ϕ|), only the antisymmetric
part of T ∗�

gy contributes in the first term of (5.33):

T ∗�
gy : ∇

(
∂x
∂ϕ

)
= ẑ ·

[∫
P
JgyF

(
Ẋ × e

c
A∗

0

)
− ε

4π

(
Dgy × E1 + B1 × Hgy

)]

= ẑ ·
[∫

P
JgyF

(
Ẋ × e

c
A∗

0

)
+ εE1 × Pgy + εB1 × Mgy

]

− ẑ

4π
· (εB1 × B0), (5.34)

where we used the dyadic identities I : ∇(∂x/∂ϕ) = ∇ · (∂x/∂ϕ) = 0 and VW :
∇(∂x/∂ϕ) ≡ ẑ · (W × V ), which holds for an arbitrary pair of vectors (V ,W ). Next, the
last term is

∂ ′Kgy

∂ϕ
= ẑ ·

[
εμb̂0 × 〈〈B1gc〉〉 + p‖b̂0

mc
× (εB1 × πgy

)+ πgy × ε

(
E1 + p‖b̂0

mc
× B1

)]
,

(5.35)
where πgy ≡ πgc + επ2. Lastly, we write ∂A∗

0/∂ϕ = ẑ × A∗
0 and, after some cancellations,

(5.33) becomes

∂P∗
gyϕ

∂t
+ ∇ ·

(
T ∗

gy · ∂x
∂ϕ

)
= ẑ · ε

(
E1 × Pgy + B1 × Mgy

)−
∫
P
JgyF

∂ ′Kgy

∂ϕ
, (5.36)

where

ẑ · ε
(
E1 × Pgy + B1 × Mgy

) =
∫
P
JgyFẑ · ε

(
E1 × πgy − μ〈〈B1gc〉〉 × b̂0

)

+
∫
P
JgyFẑ ·

[
B1 ×

(
πgy × p‖b̂0

mc

)]
. (5.37)

Upon further cancellations, (5.36) becomes

∂P∗
gyϕ

∂t
+ ∇ ·

(
T ∗

gy · ∂x
∂ϕ

)
=
∫
P
JgyFẑ · N, (5.38)

where the gyrocentre torque

N ≡ ε
p‖
mc

[
B1 ×

(
πgy × b̂0

)
+ πgy ×

(
b̂0 × B1

)
+ b̂0 × (B1 × πgy

)] ≡ 0 (5.39)

vanishes according to the Jacobi identity

U × (V × W ) + V × (W × U) + W × (U × V ) ≡ 0 (5.40)
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for the double vector product of any three arbitrary vector fields (U,V ,W ). For the
gauge-free model of Brizard (2020), the gyrocentre torque

N ≡
3∑

i=1

[U i × (V i × W i) + V i × (W i × U i) + W i × (U i × V i)] ≡ 0 (5.41)

also vanishes as a result of the Jacobi vector identity (5.40), where

(U1,V 1,W 1) =
(
ε〈B1gc〉,πgy, p‖b̂0/mc

)
,

(U2,V 2,W 2) =
(
εB1,−επ2, p‖b̂0/mc

)
,

(U3,V 3,W 3) =
(
Ẋ , ε〈E1gc〉 + p‖b̂0/mc × ε〈B1gc〉, eb̂0/Ω0

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.42)

5.4. Gyrokinetic angular momentum conservation in axisymmetric tokamak plasmas
Hence, we have explicitly proved that the gyrokinetic canonical angular momentum
conservation law

∂P∗
gyϕ

∂t
+ ∇ ·

(
T ∗

gy · ∂x
∂ϕ

)
= 0 (5.43)

follows exactly from the gyrokinetic Vlasiov–Maxwell equations. We now evaluate this
equation in axisymmetric tokamak geometry, in which the tokamak magnetic field is B0 =
B0ϕ(ψ)∇ϕ + ∇ϕ × ∇ψ , where ψ denotes the magnetic poloidal flux and the toroidal
component B0ϕ(ψ) is a flux function. In (5.43), the total toroidal angular momentum
density

P∗
gyϕ =

∫
P
JgyF

(
P∗
gcϕ + Πgy · ∂x

∂ϕ

)
+ Dgy

4πc
× εB1 · ∂x

∂ϕ
(5.44)

is the sum of three groups of terms.
The first group in (5.44) is defined as the gyrocentre moment of the guiding-centre

toroidal angular momentum:

P∗
gcϕ ≡ e

c
A∗

0 · ∂x
∂ϕ

= −e
c
ψ + p‖ b0ϕ − J

[
2b0z + ∇ ·

(
1
2B0

∇ψ

)]
, (5.45)

which contains higher-order guiding-centre corrections (Tronko & Brizard 2015). In a
careful numerical analysis of the exact particle orbits of energetic ions in a tokamak
magnetic field, Belova, Gorlenkov & Cheng (2003) have shown that the higher-order
guiding-centre corrections to the lowest-order guiding-centre toroidal angular momentum
P∗
gcϕ = −(e/c)ψ + p‖b0ϕ + · · · play a crucial role in the guiding-centre toroidal angular

momentum law (i.e. in the absence of electromagnetic field perturbations). We note that it
is a common practice to extract the dominant guiding-centre contribution from −(e/c)ψ
using the identity

− ∂

∂t

(∫
P
JgyF

e
c
ψ

)
− ∇ ·

(∫
P
JgyẊF

e
c
ψ

)
= −

∫
P
JgyF

e
c
ψ̇ ≡ −1

c
Jψ
gy, (5.46)

where the radial velocity ψ̇ ≡ Ẋ · ∇ψ is expressed in terms of the gyrocentre velocity
Ẋ :

ψ̇ = ∇ψ ·
(
E∗

gy × cb∗
gy

B∗∗
gy‖

+ ∂Kgy

∂p‖

B∗
gy

B∗∗
gy‖

)
. (5.47)
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Hence, we may now define Pgcϕ ≡ P∗
gcϕ + (e/c)ψ , and thus (5.43) becomes

∂Pgyϕ

∂t
+ ∇ ·

(
T gy · ∂x

∂ϕ

)
= 1

c
Jψ
gy, (5.48)

where the toroidal angular momentum density (5.44) is now defined with Pgcϕ .
The second group in (5.44), which appears because of the symplectic momentum

perturbation Πgy, contains the toroidal components of the perturbed E × B velocity and
magnetic flutter momentum:

Πgy · ∂x
∂ϕ

= ε

(
〈E1gc〉 × eb̂0

Ω0
+ p‖

B0
〈B1⊥gc〉

)
· ∂x

∂ϕ

= e
B0Ω0

(
〈E1gc〉 + p‖b̂0

mc
× 〈B1gc〉

)
· ∇ψ, (5.49)

which can be expressed in terms of the radial component of the perturbed gyrocentre force,
where we used the tokamak identity

B0 × ∂x/∂ϕ = ∇ψ. (5.50)

The third group in (5.44) contains the toroidal component of the Minkowski
electromagnetic momentum (Abiteboul et al. 2011):

Dgy

4πc
× εB1 · ∂x

∂ϕ
= 1

4πc

[(
εE1 + 4πPgy

)× εB1
] · ∂x

∂ϕ
. (5.51)

The partial time derivative of this term can be directly obtained from the toroidal
component of (5.28). We note that, in the electrostatic limit (i.e. in the absence of magnetic
field perturbations), we recover the flux-averaged gyrokinetic toroidal angular momentum
density previously derived (without guiding-centre corrections, i.e. Pgcϕ = p‖b0ϕ) (Hahm
et al. 2007; Scott & Smirnov 2010; Abiteboul et al. 2011; Brizard & Tronko 2011).
Finally, we proceed with a flux-surface average (Brizard & Tronko 2011):

[[· · ·]] ≡ 1
V
∮

(· · · )Jψ dϑ dϕ, (5.52)

where V(ψ) ≡ ∮ Jψ dϑ dϕ is the surface integral of the magnetic coordinate Jacobian
Jψ ≡ (∇ψ × ∇θ · ∇ϕ)−1 = 1/Bθ

0. The flux-surface average (5.52) satisfies the property

[[∇ · C]] ≡ 1
V

∂

∂ψ
(V[[C · ∇ψ]]) (5.53)

for any vector field C . In a time-independent axisymmetric tokamak geometry, we note
that ∂/∂t also commutes with magnetic surface averaging. The magnetic surface-averaged
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gyrokinetic canonical angular momentum conservation law (5.48) becomes

∂[[Pgyϕ]]
∂t

+ 1
V

∂

∂ψ

(V [[Tψ
gyϕ

]]) = 1
c
[[Jψ

gy]], (5.54)

where Tψ
gyϕ ≡ ∇ψ · T ∗

gy · ∂x/∂ϕ is defined as

Tψ
gyϕ =

∫
P
JgyFψ̇

(
Pgcϕ + Πgy · ∂x

∂ϕ

)
− ε

4π
∇ψ · (DgyE1 + B1Hgy

) · ∂x
∂ϕ

, (5.55)

where we have used ∇ψ · ∂x/∂ϕ = 0 and ψ̇ is given in (5.47). We note that, using the
tokamak identity (5.50), the third term in (5.55), which contains the polarization term
derived by McDevitt et al. (2009) in the parallel limit, can be expressed as

∇ψ ·
( ε

4π
DgyE1

)
· ∂x

∂ϕ
= ∂x

∂ϕ
·
[ ε

4π

(
Dgy × B0

)
E1

]
· ∂x

∂ϕ
, (5.56)

and similarly for the fourth term. Similar terms have appeared in the toroidal angular
momentum transport analysis of Parra & Catto (2010b).

6. Summary

The energy–momentum and toroidal angular momentum conservation laws of two
gauge-free gyrokinetic Vlasov–Maxwell models were derived by the Noether method
under the assumption of a time-independent and axisymmetric equilibrium magnetic
field. The explicit proof of these conservation laws highlights the roles played by the
equilibrium magnetized plasma and the electromagnetic field fluctuations that perturb it.
In addition, we also demonstrated how the gyrokinetic Noether momentum equation (5.22)
follows exactly from the gyrokinetic Vlasov–Maxwell equations. Hence, a gyrokinetic
parallel-momentum transport equation can be derived explicitly without proceeding
through a gyrokinetic Vlasov moment approach.
The proofs presented in § 5 also show how gyrokinetic models can be simplified

without jeopardizing the energy–momentum conservation laws. For example, Hirvijoki
et al. (2020) considered the simplified gyrocentre kinetic energy (3.4) for the Hamiltonian
gyrokinetic model (Burby & Brizard 2019) obtained by omitting the guiding-centre
electric dipole moment πgc. This omission yields simplified expressions for the gyrocentre
polarization and magnetization (4.13) and (4.14), without sacrificing energy and angular
momentum conservation.
In the gauge-free symplectic gyrokinetic model considered by Brizard (2020),

it is possible to truncate the gyrocentre kinetic energy (3.6) at first order in ε,
thereby eliminating the corrections π2 and μB1/B0 in the gyrocentre polarization
and magnetization (4.13) and (4.14), which arise from functional derivatives of the
second-order gyrocentre Hamiltonian.
Finally, we note that an exact toroidal angular momentum conservation for the

gyrokinetic Vlasov–Maxwell equations is obtained even though the gyrokinetic stress
tensor is manifestly asymmetric. In contrast to the guiding-centre Vlasov–Maxwell
equations, where the interplay between ponderomotive, polarization and magnetization
effects results in a symmetric guiding-centre stress tensor (as required because the
magnetic field is not split into background and perturbed components), the case of
the standard gyrokinetic splitting of the magnetic field into background and perturbed
components requires an asymmetric gyrokinetic stress tensor, as can be seen from (5.33).
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The recent work by Chen et al. (2020) and Sugama et al. (2021) may pave the way to a
nonlinear gyrokinetic theory with full electromagnetic effects without field splitting, from
which a symmetric stress tensor will arise (but only a careful analysis of ponderomotive,
polarization and magnetization effects is carried out).
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